Indicate in standard form the equation of the line passing through the given points, writing the answer in the equation
box below.
M(0,6) N(6,0)

Indicate in standard form the equation of the line passing through the given points writing the answer in the equation box below M06 N60 class=

Respuesta :

Answer:

[tex]y + x - 6 = 0[/tex]

Step-by-step explanation:

Given

[tex]M(0,6) \ and \ N(6,0)[/tex]

Required

Find the equation of the line

First, the slope of the line has to be calculated using the following formula;

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]where\ (x_1,y_1) = (0,6) \ and \ (x_2,y_2) = (6,0)[/tex]

So, the equation becomes

[tex]m = \frac{0 - 6}{6 - 0}[/tex]

[tex]m = \frac{-6}{6}[/tex]

[tex]m = -1[/tex]

The equation of the line can then be calculated using

[tex]m = \frac{y - y_1}{x - x_1} \ or \ m = \frac{y - y_2}{x - x_2}[/tex]

[tex]Using \ m = \frac{y - y_1}{x - x_1}[/tex]

[tex]-1 = \frac{y - 6}{x -0}[/tex]

[tex]-1 = \frac{y - 6}{x}[/tex]

Multiply both sides by x

[tex]-1 * x = \frac{y - 6}{x} * x[/tex]

[tex]-x = y - 6[/tex]

Add x to both sides

[tex]x -x = y - 6 + x[/tex]

[tex]0 = y - 6 + x[/tex]

Reorder

[tex]y + x- 6 = 0[/tex]

[tex]Using \ m = \frac{y - y_2}{x - x_2}[/tex]

[tex]-1 = \frac{y - 0}{x - 6}[/tex]

[tex]-1 = \frac{y}{x - 6}[/tex]

Multiply both sides by x - 6

[tex]-1 * (x-6) = \frac{y}{x - 6} * (x-6)[/tex]

[tex]-1 * (x-6) = y[/tex]

[tex]-x+6 = y[/tex]

Add x - 6 to both sided

[tex]x - 6 -x+6 = y +x - 6[/tex]

[tex]0 = y + x - 6[/tex]

[tex]y + x - 6 = 0[/tex]

Hence, the equation of the line is [tex]y + x - 6 = 0[/tex]