Answer:
[tex]f(x) = x + 3[/tex]
Step-by-step explanation:
Given
Points (−5,−2) and (−3,0)
Required
Find a linear function that passes through the given points
The question implies that we solve for the equation for the line;
First, the slope of the line must be calculated;
This is calculated as thus:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where [tex](x_1,y_1) = (-5,-2)\ and\ (x_2,y_2) = (-3,0)[/tex]
So, [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex] becomes
[tex]m = \frac{0 - (-2)}{-3 - (-5)}[/tex]
[tex]m = \frac{0 + 2}{-3 + 5}[/tex]
[tex]m = \frac{2}{2}[/tex]
[tex]m = 1[/tex]
The equation of the line can then be calculated using any of the given points;
Using
[tex]m = \frac{y - y_1}{x - x_1}[/tex]
[tex]Where\ (x_1,y_1) = (-5,-2)\ and\ m =1[/tex]
We have
[tex]1 = \frac{y-(-2)}{x-(-5)}[/tex]
[tex]1 = \frac{y+2}{x+5}[/tex]
Multiply both sides by x + 5
[tex](x+5)*1 = \frac{y+2}{x+5} * (x+5)[/tex]
[tex]x + 5 = y + 2[/tex]
Subtract 2 from both sides
[tex]x + 5 - 2 = y + 2 - 2[/tex]
[tex]x + 3 = y[/tex]
[tex]y = x + 3[/tex]
Replace y with f(x)
[tex]f(x) = x + 3[/tex]
Hence, from the list of given options; Option B is correct