List the four possible results of the combinations of decisions and true states of nature for a test of hypothesis. Which of the following lists the four possible results of the combinations of decisions and true states of nature for a test of​ hypothesis? A. Reject Upper H 0H0 when Upper H 0H0 is​ true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is​ true; reject Upper H 0H0 when Upper H Subscript aHa is​ true; insufficient evidence to reject Upper H 0H0 when Upper H Subscript aHa is true B. Reject Upper H 0H0 when Upper H 0H0 is​ true; insufficient evidence to reject Upper H 0H0 when Upper H Subscript aHa is​ true; reject Upper H Subscript aHa when Upper H Subscript aHa is​ true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is true C. Reject Upper H 0H0 when Upper H Subscript aHa is​ true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is​ true; reject Upper H Subscript aHa when Upper H 0H0 is​ true; insufficient evidence to reject Upper H 0H0 when Upper H Subscript aHa is true D. Reject Upper H 0H0 when Upper H 0H0 is​ true; insufficient evidence to reject Upper H 0H0 when Upper H 0H0 is​ true; reject Upper H 0H0 when Upper H Subscript aHa is​ true; accept Upper H Subscript aHa when Upper H 0H0 is true

Respuesta :

Answer:

A

Step-by-step explanation:

The combinations of decisions and true states of nature for a test of​ hypothesis is given below:

  • When [tex]H_o[/tex] is True, Accept [tex]H_o[/tex]
  • When [tex]H_o[/tex] is True, Reject [tex]H_o[/tex] (Type I Error)
  • When [tex]H_o[/tex] is False, Accept [tex]H_o[/tex] (Type II Error)
  • When [tex]H_o[/tex] is False, Reject [tex]H_o[/tex]

Note that when [tex]H_o[/tex] is False, then the Alternate Hypothesis, [tex]H_a[/tex] is True.

Therefore Option A gives the possible combinations.

The possible choices in Option A are ordered below to correspond to the results above.

  • Insufficient evidence to reject [tex]H_o[/tex]  when [tex]H_o[/tex]  is​ true;
  • Reject [tex]H_o[/tex]  when [tex]H_o[/tex]  is​ true; Type 1 Error
  • Insufficient evidence to reject [tex]H_o[/tex]  when [tex]H_a[/tex]  is true -Type II Error
  • Reject [tex]H_o[/tex]  when [tex]H_a[/tex]  is​ true;