Pet Place sells pet food and supplies including a popular bailed hay for horses. When the stock of this hay drops to 20 bails, a replenishment order is placed. The store manager is concerned that sales are being lost due to stock outs while waiting for a replenishment order. It has been previously determined that demand during the lead-time is normally distributed with a mean of 15 bails and a standard deviation of 6 bails. The manager would like to know the probability of a stockout during replenishment lead-time. In other words, what is the probability that demand during lead-time will exceed 20 bails

Respuesta :

Answer:

The probability that demand during lead-time will exceed 20 bails is 0.2033.

Step-by-step explanation:

We are given that it has been previously determined that demand during the lead-time is normally distributed with a mean of 15 bails and a standard deviation of 6 bails.

Let X = demand during the lead-time

So, X ~ Normal([tex]\mu=15, \sigma^{2} = 6^{2}[/tex])

The z-score probability distribution for the normal distribution is given by;

                               Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu=[/tex] population mean demand = 15 bails

           [tex]\sigma[/tex] = standard deviation = 6 bails

Now, the probability that demand during lead-time will exceed 20 bails is given by = P(X > 20 bails)

       P(X > 20 bails) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{20-15}{6}[/tex] ) = P(Z > 0.83) = 1 - P(Z [tex]\leq[/tex] 0.83)

                                                             = 1 - 0.7967 = 0.2033