Respuesta :
Complete Question
C2B.7
Suppose I drop a 60-kg anvil from rest and from such a height that the anvil reaches a speed of 10 m/s just before hitting the ground. Assume the earth was at rest before I dropped the anvil.
(a) What is the earth's speed just before the anvil hits?
b) How long would it take the earth to travel [tex]1.0 \mu m[/tex] (about a bacterium's width) at this speed?
Answer:
a
[tex]|v_1| = 1.0*10^{-22} \ m/s[/tex]
b
[tex]t = 9.95 *10^{15} \approx 10 *10^{15} \ s[/tex]
Explanation:
From the question we are told that
The mass of the anvil is [tex]m_a = 60\ kg[/tex]
The speed at which it hits the ground is [tex]v = 10 \ m/s[/tex]
Generally the mass of the earth has a value [tex]m_e = 5972*10^{24} \ kg[/tex]
Now according to the principle of momentum conservation
[tex]P_i = P_f[/tex]
Where [tex]P_i[/tex] is the initial momentum which is zero given that both the anvil and the earth are at rest
Now [tex]P_f[/tex] is the final momentum which is mathematically represented as
[tex]P_f = m_a * v + m_e * v_1[/tex]
So
[tex]0 = m_a * v + m_e * v_1[/tex]
substituting values
[tex]0 = 60 * 10 + 5.972 *10^{24} * v_1[/tex]
=> [tex]v_1 = -1.0*10^{-22} \ m/s[/tex]
Here the negative sign show that it is moving in the opposite direction to the anvil
The magnitude of the earths speed is
[tex]|v_1| = 1.0*10^{-22} \ m/s[/tex]
The time it would take the earth is mathematically represented as
[tex]t = \frac{d}{|v_1|}[/tex]
substituting values
[tex]t = \frac{1.0*10^{-6}}{1.0 *10^{-22}}[/tex]
[tex]t = 10 *10^{15} \ s[/tex]