Answer:
(C)12 Units
Step-by-step explanation:
Triangle WRS has points W(0, -1), R(1.75, 1.5), and S(5, -1).
[tex]WR=\sqrt{(1.75-0)^2+(1.5-(-1))^2}=\dfrac{\sqrt{149}}{4}[/tex]
[tex]WS=\sqrt{(5-0)^2+(-1-(-1))^2}=\sqrt{25}=5[/tex]
[tex]RS=\sqrt{(5-1.75)^2+(-1-1.5)^2}=\dfrac{\sqrt{269}}{4}[/tex]
Perimeter of Triangle WRS
[tex]= \dfrac{\sqrt{149}}{4}+5+\dfrac{\sqrt{269}}{4}\\\approx 12$ Units[/tex]