Answer:
The answer is "[tex]58.625 cm^3[/tex]"
Step-by-step explanation:
Consider the cube volume of x =6 cm.
Substitute x = 6 cm in the volume
[tex]V= x^3\\\\ V = (6)^3\\\\ V = 216[/tex]
Therefore, whenever the cube volume
[tex]x=6 \ cm \ is \ V= 216 \ cm^3[/tex]
Then consider the cube's volume
x = 6.5 cm.
Substitute x = 6.5 cm in the volume
[tex]V_1 = x^3\\V_1 = (6.5)^3\\V_1 = 274.625 \\[/tex] by using the calculator.
Therefore, when another cube volume
[tex]x = 6.5 cm \\\\ V_1 = 274.625 cm^3.[/tex]
The real volume error x = 6.5 cm instead of x = 6 cm is calculated as,
[tex]dV= V_1-V\\[/tex]
[tex]=274.625-216\\=58.625\\[/tex]
Hence, the actual error in the volume when x = 6.5 cm instead of x = 6 cm is [tex]58.625 \ cm^3.[/tex]