Respuesta :

Question:

Which is equivalent to [tex]\sqrt{180x^{11}}[/tex] after it has been simplified completely?

Answer:

[tex]\sqrt{180x^{11}} = 6x^{5}\sqrt{5x}[/tex]

Step-by-step explanation:

Given

[tex]\sqrt{180x^{11}}[/tex]

Required

Simplify

We start by splitting the square root

[tex]\sqrt{180x^{11}} = \sqrt{180} * \sqrt{x^{11}}[/tex]

Replace 180 with 36 * 5

[tex]\sqrt{180x^{11}} = \sqrt{36 * 5} * \sqrt{x^{11}}[/tex]

Further split the square roots

[tex]\sqrt{180x^{11}} = \sqrt{36} *\sqrt{5} * \sqrt{x^{11}}[/tex]

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * \sqrt{x^{11}}[/tex]

Replace power of x; 11 with 10 + 1

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * \sqrt{x^{10 + 1}}[/tex]

From laws of indices; [tex]a^{m+n} = a^m * a^n[/tex]

So, we have

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * \sqrt{x^{10} * x^1}[/tex]

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * \sqrt{x^{10} * x}[/tex]

Further split the square roots

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * \sqrt{x^{10}} * \sqrt{x}[/tex]

From laws of indices; [tex]\sqrt{a} = a^{\frac{1}{2}}[/tex]

So, we have

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * x^{10*\frac{1}{2}} * \sqrt{x}[/tex]

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * x^{\frac{10}{2}} * \sqrt{x}[/tex]

[tex]\sqrt{180x^{11}} = 6*\sqrt{5} * x^{5} * \sqrt{x}[/tex]

Rearrange Expression

[tex]\sqrt{180x^{11}} = 6 * x^{5} * \sqrt{5} * \sqrt{x}[/tex]

[tex]\sqrt{180x^{11}} = 6x^{5} * \sqrt{5} * \sqrt{x}[/tex]

From laws of indices; [tex]\sqrt{a} *\sqrt{b} = \sqrt{a*b} = \sqrt{ab}[/tex]

So, we have

[tex]\sqrt{180x^{11}} = 6x^{5} * \sqrt{5*x}[/tex]

[tex]\sqrt{180x^{11}} = 6x^{5} * \sqrt{5x}[/tex]

[tex]\sqrt{180x^{11}} = 6x^{5}\sqrt{5x}[/tex]

The expression can no longer be simplified

Hence, [tex]\sqrt{180x^{11}}[/tex] is equivalent to [tex]6x^{5}\sqrt{5x}[/tex]

Answer:

D on edg

Step-by-step explanation:

6x^5 V5x is correct