Answer:
4.6%.
Step-by-step explanation:
The probability that a can of paint contains contamination(C) is 3.23%
P(C)=3.23%
The probability of a mixing(M) error is 2.4%.
P(M)=2.4%
The probability of both is 1.03%.
[tex]P(C \cap M)=1.03\%[/tex]
We want to determine the probability that a randomly selected can has contamination or a mixing error. i.e. [tex]P(C \cup M)[/tex]
In probability theory:
[tex]P(C \cup M) = P(C)+P(M)-P(C \cap M)\\P(C \cup M)=3.23+2.4-1.03\\P(C \cup M)=4.6\%[/tex]
The probability that a randomly selected can has contamination or a mixing error is 4.6%.