Respuesta :

Answer:

[tex]3y - 2x = 13[/tex]

Step-by-step explanation:

Given

Points (-14,-5) and (4,7)

Required

Find its linear equation in a standard form

To find the linear form, we start by calculating the slope of the line

This is calculated as thus:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where [tex](x_1,y_1) = (-14,-5)\ and\ (x_2,y_2) = (4,7)[/tex]

So, [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex] becomes

[tex]m = \frac{7 - (-5)}{4 - (-14)}[/tex]

[tex]m = \frac{7 + 5}{4 + 14}[/tex]

[tex]m = \frac{12}{18}[/tex]

Simplify fraction to lowest term

[tex]m = \frac{6*2}{6*3}[/tex]

[tex]m = \frac{2}{3}[/tex]

The equation of the line can then be calculated using any of the given points;

Using

[tex]m = \frac{y - y_1}{x - x_1}[/tex]

[tex]Where\ (x_1,y_1) = (-14,-5)\ and\ m = \frac{2}{3}[/tex]

We have

[tex]\frac{2}{3} = \frac{y-(-5)}{x-(-14)}[/tex]

[tex]\frac{2}{3} = \frac{y+5}{x+14}[/tex]

Multiply both sides by 3

[tex]3 * \frac{2}{3} = \frac{y+5}{x+14} * 3[/tex]

[tex]2 = \frac{y+5}{x+14} * 3[/tex]

[tex]2 = \frac{3(y+5)}{x+14}[/tex]

Multiply both sides by x + 14

[tex]2 * (x + 14) = \frac{3(y+5)}{x+14} * (x + 14)[/tex]

[tex]2 * (x + 14) = 3(y+5)[/tex]

Open brackets

[tex]2 * x + 2 * 14 = 3* y+ 3 * 5[/tex]

[tex]2x + 28 = 3y+ 15[/tex]

Subtract 2x from both sides

[tex]2x - 2x + 28 = 3y+ 15 - 2x[/tex]

[tex]28 = 3y+ 15 - 2x[/tex]

Subtract 15 from both sides

[tex]28 - 15 = 3y+ 15 - 2x - 15[/tex]

[tex]28 - 15 = 3y - 2x + 15- 15[/tex]

[tex]13 = 3y - 2x[/tex]

Reorder

[tex]3y - 2x = 13[/tex]

Hence, the equation of the line in standard form is [tex]3y - 2x = 13[/tex]