Respuesta :
Answer:
[tex]3y - 2x = 13[/tex]
Step-by-step explanation:
Given
Points (-14,-5) and (4,7)
Required
Find its linear equation in a standard form
To find the linear form, we start by calculating the slope of the line
This is calculated as thus:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where [tex](x_1,y_1) = (-14,-5)\ and\ (x_2,y_2) = (4,7)[/tex]
So, [tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex] becomes
[tex]m = \frac{7 - (-5)}{4 - (-14)}[/tex]
[tex]m = \frac{7 + 5}{4 + 14}[/tex]
[tex]m = \frac{12}{18}[/tex]
Simplify fraction to lowest term
[tex]m = \frac{6*2}{6*3}[/tex]
[tex]m = \frac{2}{3}[/tex]
The equation of the line can then be calculated using any of the given points;
Using
[tex]m = \frac{y - y_1}{x - x_1}[/tex]
[tex]Where\ (x_1,y_1) = (-14,-5)\ and\ m = \frac{2}{3}[/tex]
We have
[tex]\frac{2}{3} = \frac{y-(-5)}{x-(-14)}[/tex]
[tex]\frac{2}{3} = \frac{y+5}{x+14}[/tex]
Multiply both sides by 3
[tex]3 * \frac{2}{3} = \frac{y+5}{x+14} * 3[/tex]
[tex]2 = \frac{y+5}{x+14} * 3[/tex]
[tex]2 = \frac{3(y+5)}{x+14}[/tex]
Multiply both sides by x + 14
[tex]2 * (x + 14) = \frac{3(y+5)}{x+14} * (x + 14)[/tex]
[tex]2 * (x + 14) = 3(y+5)[/tex]
Open brackets
[tex]2 * x + 2 * 14 = 3* y+ 3 * 5[/tex]
[tex]2x + 28 = 3y+ 15[/tex]
Subtract 2x from both sides
[tex]2x - 2x + 28 = 3y+ 15 - 2x[/tex]
[tex]28 = 3y+ 15 - 2x[/tex]
Subtract 15 from both sides
[tex]28 - 15 = 3y+ 15 - 2x - 15[/tex]
[tex]28 - 15 = 3y - 2x + 15- 15[/tex]
[tex]13 = 3y - 2x[/tex]
Reorder
[tex]3y - 2x = 13[/tex]
Hence, the equation of the line in standard form is [tex]3y - 2x = 13[/tex]