Answer:
The equation are
[tex]x =\frac{ 12-z }{h} 8 cos (2 z)[/tex]
[tex]y = \frac{12-z }{12} 8sin (2z)[/tex]
z = z
Step-by-step explanation:
From the question we are told that
The radius of the conical helix is [tex]r= 8[/tex]
The height of the conical helix is [tex]h = 12[/tex]
The angular frequency is [tex]w = 2[/tex]
The plot of the conical helix is shown on the first uploaded image
Generally the parametric equation of a conical helix is mathematically represented as
for x -axis
[tex]x =\frac{ h-z }{h} r cos (wz)[/tex]
substituting values
[tex]x =\frac{ 12-z }{h} 8 cos (2 z)[/tex]
for y-axis
[tex]y = \frac{h-z }{h} rsin (wz)[/tex]
substituting values
[tex]y = \frac{12-z }{12} 8sin (2z)[/tex]
for z-axis
z = z