You measure the power delivered by a battery to be 1.15 W when it is connected in series with two equal resistors. How much power will the same battery deliver if the resistors are now connected in parallel across it

Respuesta :

Answer:

The power is  [tex]P_p = 4.6 \ W[/tex]

Explanation:

From the question we are told that

   The power delivered is  [tex]P_{s} = 1.15 \ W[/tex]

   Let it resistance be denoted as R

    The resistors are connected in series so the equivalent resistance is  

     [tex]R_{eqv} = R+ R = 2 R[/tex]

Considering when it is connected in series    

Generally power is mathematically represented as

     [tex]P_s = V * I[/tex]

Here I is the current which is mathematically represented as

       [tex]I = \frac{V}{2R}[/tex]

The power becomes

     [tex]P_s = V * \frac{V}{2R}[/tex]

     [tex]P_s = \frac{V^2}{2R}[/tex]

substituting value

    [tex]1.15 = \frac{V^2}{2R}[/tex]

Considering when resistance is connected in parallel

  The equivalent resistance becomes

    [tex]R_{eqv} = \frac{R}{2}[/tex]

So The current  becomes

       [tex]I = \frac{V}{\frac{R}{2} } = \frac{2V}{R}[/tex]

And the power becomes

     [tex]P_p = V * \frac{2V}{R} = \frac{2V^2}{R} = \frac{4 V^2}{2 R} = 4 * P_s[/tex]

 substituting values

     [tex]P_p = 4 * 1.15[/tex]

     [tex]P_p = 4.6 \ W[/tex]