Respuesta :
Answer:
[CH₂Cl₂] = 7.07x10⁻² M
[CH₄] = 0.319 M
[CCl₄] = 0.164 M
Explanation:
The equilibrium reaction is the following:
2CH₂Cl₂(g) ⇄ CH₄(g) + CCl₄(g)
The equilibrium constant of the above reaction is:
[tex] K = \frac{[CH_{4}][CCl_{4}]}{[CH_{2}Cl_{2}]^{2}} = \frac{0.173 M*0.173 M}{(5.35 \cdot 10^{-2} M)^{2}} = 10.5 [/tex]
When 0.155 mol of CH₄(g) is added to the flask we have the following concentration of CH₄:
[tex] C = \frac{\eta}{V} = \frac{0.155 mol}{1.00 L} = 0.155 M [/tex]
[tex]C_{CH_{4}} = 0.328 M[/tex]
Now, the concentrations at the equilibrium are:
2CH₂Cl₂(g) ⇄ CH₄(g) + CCl₄(g)
5.35x10⁻² - 2x 0.328 + x 0.173 + x
[tex]K = \frac{[CH_{4}][CCl_{4}]}{[CH_{2}Cl_{2}]^{2}} = \frac{(0.328 + x)(0.173 + x)}{(5.35 \cdot 10^{-2} - 2x)^{2}}[/tex]
[tex]10.5*(5.35 \cdot 10^{-2} - 2x)^{2} - (0.328 + x)*(0.173 + x) = 0[/tex]
Solving the above equation for x:
x₁ = 0.076 and x₂ = -0.0086
Hence, the concentration of the three gases once equilibrium has been reestablished is:
[CH₂Cl₂] = 5.35x10⁻² - 2(-0.0086) = 7.07x10⁻² M
[CH₄] = 0.328 + (-0.0086) = 0.319 M
[CCl₄] = 0.173 + (-0.0086) = 0.164 M
We took x₂ value because the x₁ value gives a negative CH₂Cl₂ concentration.
I hope it helps you!