A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track with length 2R that has a kinetic friction coefficient of 0.5. From what height h must the mass be released to stay on the track

Respuesta :

Answer:

   h = 2 R (1 +μ)

Explanation:

This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the

let's use the mechanical energy conservation agreement

starting point. Lower, just at the curl

       Em₀ = K = ½ m v₁²

final point. Highest point of the curl

        [tex]Em_{f}[/tex] = U = m g y

Find the height y = 2R

      Em₀ = Em_{f}

      ½ m v₁² = m g 2R

       v₁ = √ 4 gR

Any speed greater than this the body remains in the loop.

In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law

X axis

    -fr = m a                      (1)

Y Axis  

      N - W = 0

      N = mg

the friction force has the formula

     fr = μ  N

     fr = μ m g

    we substitute 1

    - μ mg = m a

     a = - μ g

having the acceleration, we can use the kinematic relations

    v² = v₀² - 2 a x

    v₀² = v² + 2 a x

the length of this zone is x = 2R

    let's calculate

     v₀ = √ (4 gR + 2 μ g 2R)

     v₀ = √4gR( 1 + μ)

this is the speed so you must reach the area with fricticon

finally have the third part we use energy conservation

starting point. Highest on the ramp without rubbing

     Em₀ = U = m g h

final point. Just before reaching the area with rubbing

     [tex]Em_{f}[/tex] = K = ½ m v₀²

      Em₀ = Em_{f}

     mgh = ½ m 4gR(1 + μ)

       h = ½ 4R (1+ μ)

       h = 2 R (1 +μ)