Respuesta :

Answer:

12.167(option D)

Solution,

[tex]side \: length(s) = 2.3 \\ volume = {s}^{3} \\ \: \: \: \: \: \: \: \: \: \: = {(2.3)}^{3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: = 2.3 \times 2.3 \times 2.3 \\ \: \: \: \: \: \: \: \: = 12.167 \: {cm}^{3} \\ [/tex]

hope it helps...

Good luck on your assignment....

Answer:C.8.027

Step-by-step

V = s[tex]^{3}[/tex]

The rate of change is found using the first derivative of this function. This is often called the gradient function, because it gives the gradient of a tangent line drawn at the specified point.

[tex]\frac{dV}{ds}[/tex](s[tex]^{3}[/tex]) =3s[tex]^{2}[/tex]

We now plug in  s =6

3s[tex]^{2}[/tex] = 3(6)[tex]^{2}[/tex] = 8.027[tex]\frac{cm3}{s}[/tex]