Three sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2, and a laser beam is directed onto the sheets from above so that it strikes the interface at an angle of 26.50 with the normal. The refracted beam in sheet 2 makes an angle of 31.70 with the normal. The experiment is repeated with sheet 3 on top of sheet 2, and with the same angle of incidence, the refracted beam makes an angle of 36.70 with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3, determine the expected angle of refraction in sheet 3? Assume the same angle of incidence.

Respuesta :

Answer:

The angle of refraction of sheet 3 when sheet 1 is on top of it is [tex]\theta_{r_s } = 23.1 ^o[/tex]

Explanation:

From the question we are told that

     The angle of incidence is  [tex]\theta _i = 26.50 ^o[/tex]

      The angle of refraction angle for  sheet 1 is  [tex]\theta _{r_1}} = 31.70 ^o[/tex]

       The angle of refraction for sheet 3 is  [tex]\theta _{r_3}} = 36.70 ^o[/tex]

According to Snell's  law  

       [tex]\frac{n_2}{n_1} = \frac{sin (\theta_1)}{sin (\theta_{r_1})}[/tex]

Where  [tex]n_1 \ and \ n_2[/tex]  are refractive index of sheet 1  and  sheet 2  

       =>   [tex]n_2 = n_1 \frac{sin(\theta_i)}{sin (\theta _{r_1})}[/tex]

Also  when sheet 3 in on top of sheet 2

       [tex]\frac{n_2}{n_3} = \frac{sin \theta_i}{sin \theta_{r_3}}[/tex]

substituting for  [tex]n_2[/tex]

      [tex]n_1 \frac{sin(\theta_i)}{sin (\theta _{r_1})} = n_3 \frac{sin \theta_i}{sin \theta_{r_3}}[/tex]

      [tex]n_1 \frac{sin(\theta_i)}{sin (\theta _{r_1})} = n_3 \frac{sin \theta_i}{sin \theta_{r_3}}[/tex]

=>    [tex]n_3 = n_1 * \frac{sin(\theta_{r_3})}{sin(\theta_{r_1})}[/tex]

when sheet 1 in on top of sheet 3

        [tex]\frac{n_3}{n_1} = \frac{sin(\theta_i)}{\theta_{r_s}}[/tex]

where [tex]r_s[/tex] is the angle of refraction when sheet 1 is on top of sheet 3

substituting for  [tex]n_3[/tex]

         [tex]\frac{ n_1 * \frac{sin(\theta_{r_3})}{sin(\theta_{r_1})}}{n_1} = \frac{sin(\theta_i)}{\theta_{r_s}}[/tex]

=>   [tex]sin (\theta _{r_s}) = n_1 * sin (\theta_i) * \frac{sin (\theta_{r_1})}{ n_1 * sin(\theta_{r_3})}[/tex]

substituting values

      [tex]sin (\theta _{r_s}) = n_1 * sin (26.50) * \frac{sin (31.70)}{ n_1 * sin(36.70)}[/tex]

=>     [tex]\theta_{r_s } = sin^{-1} (0.3923)[/tex]

=>   [tex]\theta_{r_s } = 23.1 ^o[/tex]