What is the solution to the linear equation? x – StartFraction 2 Over 3 EndFraction x minus StartFraction one-half EndFraction equals StartFraction 1 Over 3 EndFraction plus StartFraction 5 Over 6 EndFraction x. = + x x = –5 x = –negative StartFraction 1 Over 6 EndFraction x = StartFraction 1 Over 6 EndFraction x = 5

Respuesta :

Your question is not well presented

Question:

What is the solution to the linear equation?

[tex]x - \frac{2}{3}x - \frac{1}{2} = \frac{1}{3} + \frac{5}{6}x[/tex]

Answer:

[tex]x = \frac{-5}{3}[/tex]

Step-by-step explanation:

Given

[tex]x - \frac{2}{3}x - \frac{1}{2} = \frac{1}{3} + \frac{5}{6}x[/tex]

Required

Simplify

[tex]x - \frac{2}{3}x - \frac{1}{2} = \frac{1}{3} + \frac{5}{6}x[/tex]

Add [tex]\frac{1}{2}[/tex] to both sides

[tex]x - \frac{2}{3}x - \frac{1}{2} + \frac{1}{2} = \frac{1}{3} + \frac{5}{6}x + \frac{1}{2}[/tex]

[tex]x - \frac{2}{3}x = \frac{1}{3} + \frac{5}{6}x + \frac{1}{2}[/tex]

Subtract [tex]\frac{5}{6}x[/tex] from both sides

[tex]x - \frac{2}{3}x - \frac{5}{6}x= \frac{1}{3} + \frac{5}{6}x + \frac{1}{2} - \frac{5}{6}x[/tex]

[tex]x - \frac{2}{3}x - \frac{5}{6}x= \frac{1}{3} + \frac{1}{2} + \frac{5}{6}x- \frac{5}{6}x[/tex]

[tex]x - \frac{2}{3}x - \frac{5}{6}x= \frac{1}{3} + \frac{1}{2}[/tex]

Take LCMs

[tex]\frac{6x - 4x -5x}{6}= \frac{2+3}{6}[/tex]

[tex]\frac{-3x}{6}= \frac{5}{6}[/tex]

Multiply both sides by 6

[tex]6 * \frac{-3x}{6}= \frac{5}{6} * 6[/tex]

[tex]-3x= 5[/tex]

Divide both sides by -3

[tex]\frac{-3x}{-3}= \frac{5}{-3}[/tex]

[tex]x = \frac{5}{-3}[/tex]

[tex]x = \frac{-5}{3}[/tex]

Answer:

x=-5

Step-by-step explanation: