c2*sin(wt)+c1*cos(wt)= A*Sin(wt+phi), where c2=Acos(Phi) and c1=Asin(Phi). They ask me to find the amplitude of the function 2 sin(4pi*t)+5 cos(4pi*t), in terms of A sin(wt+phi). How do i do this?

Respuesta :

The amplitude of [tex]A\sin(\omega t+\phi)[/tex] is the absolute value of [tex]A[/tex]. So first you need to condense the given function into one sine expression.

Recall that

[tex]A\sin(\omega t+\phi)=A\sin(\omega t)\cos\phi+A\cos(\omega t)\sin\phi[/tex]

so you need to choose [tex]\phi[/tex] and [tex]\omega[/tex] accordingly.

If we line up the terms of the given function with the expanded one above, we should have

[tex]2\sin(4\pi t)+5\cos(4\pi t)\implies\begin{cases}A\cos\phi=2\\A\sin\phi=5\\\omega=4\pi\end{cases}[/tex]

Now, using the Pythagorean identity,

[tex](A\sin\phi)^2+(A\cos\phi)^2=2^2+5^2\implies A^2=29\implies A=\pm\sqrt{29}[/tex]

so the amplitude is √29.

Just for completeness, we also get

[tex]\tan\phi=\dfrac{\sin\phi}{\cos\phi}=\dfrac52\implies\phi=\tan^{-1}\left(\dfrac52\right)+n\pi[/tex]

where [tex]n[/tex] is any integer.