Respuesta :

Answer:  2p + 3q

Work Shown:

log(200) = log(2^3*5^2)

log(200) = log(2^3) + log(5^2)

log(200) = 3*log(2) + 2*log(5)

log(200) = 3*q + 2*p

log(200) = 2p + 3q

The log rules I used were

log(A*B) = log(A)+log(B)

log(A^B) = B*log(A)

The equivalent expression of log(200) is 2p + 3q

The logarithmic expression is given as:

[tex]\mathbf{log 200}[/tex]

Rewrite as:

[tex]\mathbf{log(200) = log (25 \times 8)}[/tex]

Express as exponents

[tex]\mathbf{log(200) = log (5^2 \times 2^3)}[/tex]

Split

[tex]\mathbf{log(200) = log (5^2) +log(2^3)}[/tex]

Apply law of logarithms

[tex]\mathbf{log(200) = 2log (5) +3log(2)}[/tex]

From the question;

log(5) = p and log(2) = q

So, we have:

[tex]\mathbf{log(200) = 2p +3q}[/tex]

Hence, the equivalent expression of log(200) is 2p + 3q

Read more about logarithmic expressions at:

https://brainly.com/question/9665281