What is the following product? RootIndex 3 StartRoot 16 x Superscript 7 Baseline EndRoot times RootIndex 3 StartRoot 12 x Superscript 9 Baseline EndRoot x squared (RootIndex 3 StartRoot 28 x squared EndRoot) x Superscript 5 Baseline (RootIndex 3 StartRoot 28 x EndRoot) 4 x squared (RootIndex 3 StartRoot 3 x squared EndRoot) 4 x Superscript 5 Baseline (RootIndex 3 StartRoot 3 x EndRoot)

Respuesta :

Answer:

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}\sqrt[3]{3x} }[/tex]

Step-by-step explanation:

Given

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9}[/tex]

Required

Find the products

From laws of indices;

[tex]\sqrt[m]{a} * \sqrt[m]{b} = \sqrt[m]{a*b}[/tex]

So;

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16x^7 * 12x^9}[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16* x^7 * 12 * x^9}[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^7 * x^9}[/tex]

From laws of indices

[tex]a^m * a^n = a^(m+n); So,[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^{7+9}}[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^{16}}[/tex]

Expand 16 * 12

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{4*4*4*3* x^{16}}[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{4^3 *3* x^{16}}[/tex]

From laws of imdices

[tex]a^{\frac{1}{m}} = \sqrt[m]{a}[/tex]

So;

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4^3 *3* x^{16}})^{\frac{1}{3}}[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4^{3*{\frac{1}{3}}} *3^{{\frac{1}{3}}}* x^{16*{\frac{1}{3}}}})[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{\frac{16}{3}}}[/tex]

Divide 16 by 3 (Write as ,mixed number)

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5\frac{1}{3}}}[/tex]

Split mixed numbers

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5+\frac{1}{3}}}[/tex]

Apply law of indices

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5}*{x ^\frac{1}{3}}}[/tex]

Reorder

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 * x^{5}*3^{{\frac{1}{3}}}*{x ^\frac{1}{3}}}[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*3^{{\frac{1}{3}}}*{x ^\frac{1}{3}}}[/tex]

Apply law of indices

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3} *\sqrt[3]{x} }[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3*x} }[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3x} }[/tex]

[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}\sqrt[3]{3x} }[/tex]

Answer:

D (4x^5(3sqrt3x)

Step-by-step explanation: