Respuesta :
Answer:
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}\sqrt[3]{3x} }[/tex]
Step-by-step explanation:
Given
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9}[/tex]
Required
Find the products
From laws of indices;
[tex]\sqrt[m]{a} * \sqrt[m]{b} = \sqrt[m]{a*b}[/tex]
So;
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16x^7 * 12x^9}[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16* x^7 * 12 * x^9}[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^7 * x^9}[/tex]
From laws of indices
[tex]a^m * a^n = a^(m+n); So,[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^{7+9}}[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^{16}}[/tex]
Expand 16 * 12
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{4*4*4*3* x^{16}}[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{4^3 *3* x^{16}}[/tex]
From laws of imdices
[tex]a^{\frac{1}{m}} = \sqrt[m]{a}[/tex]
So;
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4^3 *3* x^{16}})^{\frac{1}{3}}[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4^{3*{\frac{1}{3}}} *3^{{\frac{1}{3}}}* x^{16*{\frac{1}{3}}}})[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{\frac{16}{3}}}[/tex]
Divide 16 by 3 (Write as ,mixed number)
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5\frac{1}{3}}}[/tex]
Split mixed numbers
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5+\frac{1}{3}}}[/tex]
Apply law of indices
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5}*{x ^\frac{1}{3}}}[/tex]
Reorder
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 * x^{5}*3^{{\frac{1}{3}}}*{x ^\frac{1}{3}}}[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*3^{{\frac{1}{3}}}*{x ^\frac{1}{3}}}[/tex]
Apply law of indices
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3} *\sqrt[3]{x} }[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3*x} }[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3x} }[/tex]
[tex]\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}\sqrt[3]{3x} }[/tex]