The transfer function of a typical tape-drive system is given by
KG(s) = K(s + 4)/ s(s + 0.5)(s + 1)(s2 = 0.4s + 4)
where time is measured in milliseconds. Using Routh's stability criterion, determine the range of K for which this system is stable when the characteristic equation is 1 + KG(s) = 0.

Respuesta :

Answer:

the range of K can be said to be :  -3.59 < K< 0.35

Explanation:

The transfer function of a typical tape-drive system is given by;

[tex]KG(s) = \dfrac{K(s+4)}{s[s+0.5)(s+1)(s^2+0.4s+4)]}[/tex]

calculating the characteristics equation; we have:

1 + KG(s) = 0

[tex]1+ \dfrac{K(s+4)}{s[s+0.5)(s+1)(s^2+0.4s+4)]} = 0[/tex]

[tex]{s[s+0.5)(s+1)(s^2+0.4s+4)]} +{K(s+4)}= 0[/tex]

[tex]s^5 + 1.9 s^4+ 5.1s^3+6.2s^2+ 2s+K(s+4) = 0[/tex]

[tex]s^5 + 1.9 s^4+ 5.1s^3+6.2s^2+ (2+K)s+ 4K = 0[/tex]

We can compute a Simulation Table for the Routh–Hurwitz stability criterion Table as  follows:

[tex]S^5[/tex]             1                     5.1                          2+ K

[tex]S^4[/tex]            1.9                   6.2                           4K

[tex]S^3[/tex]             1.83            [tex]\dfrac{1.9 (2+K)-4K}{1.9}[/tex]          0

[tex]S^2[/tex]        [tex]\dfrac{11.34-1.9(X)}{1.83}[/tex]       4K                         0

S          [tex]\dfrac{XY-7.32 \ K}{Y}[/tex]        0                            0

[tex]\dfrac{1.9 (2+K)-4K}{1.9} = X[/tex]

 

[tex]\dfrac{11.34-1.9(X)}{1.83}= Y[/tex]

We need to understand that in a given stable system; all the elements in the first column is usually greater than zero

So;

11.34  - 1.9(X) > 0

[tex]11.34 - 1.9(\dfrac{3.8+1.9K-4K}{1.9}) > 0[/tex]

[tex]11.34 - (3.8 - 2.1K)>0[/tex]

7.54 +2.1 K > 0

2.1 K > - 7.54

K > - 7.54/2.1

K > - 3.59

Also

4K >0

K > 0/4

K > 0

Similarly;

XY - 7.32 K > 0

[tex](\dfrac{3.8+1.9K-4K}{1.9})[11.34 - 1.9(\dfrac{3.8+1.9K-4K}{1.83}) > 7.32 \ K][/tex]

0.54(2.1K+7.54)>7.32 K

11.45 K < 4.07

K < 4.07/11.45

K < 0.35

Thus the range of K can be said to be :  -3.59 < K< 0.35