Answer:
Step-by-step explanation:
Given
[tex]z(14x -2y)=7[/tex]
Required;
Solve for x, when
[tex]z(14x -2y)=7[/tex]
Divide both sides by z
[tex]\frac{z(14x -2y)}{z} = \frac{7}{z}[/tex]
[tex]14x -2y = \frac{7}{z}[/tex]
Add 2y to both sides
[tex]14x -2y + 2y= \frac{7}{z} + 2y[/tex]
[tex]14x = \frac{7}{z} + 2y[/tex]
Divide both sides by 14
[tex]\frac{14x}{14} = \frac{1}{14}(\frac{7}{z} + 2y)[/tex]
[tex]x = \frac{1}{14}(\frac{7}{z} + 2y)[/tex]
The above expression is the value of x when [tex]z\neq 0[/tex]
To solve for when z = 0, we simply substitute 0 for z
[tex]x = \frac{1}{14}(\frac{7}{z} + 2y)[/tex]
[tex]x = \frac{1}{14}(\frac{7}{0} + 2y)[/tex]
0 cant't divide any number; hence, from the above expression we conclude that
[tex]x = \ u\ n\ d\ e \ f\ i \ n\ e\ d[/tex]
or
x doesn't have a solution