Answer:
6
Explanation:
We are given that
[tex]\theta=2.12^{\circ}[/tex]
Slid width,a=0.110 mm=[tex]0.11\times 10^{-3} m[/tex]
[tex]1mm=10^{-3} m[/tex]
Wavelength,[tex]\lambda=582 nm=582\times 10^{-9}[/tex] m
[tex]1nm=10^{-9} m[/tex]
We have to find the number of diffraction maxima are contained in a region of the Fraunhofer single-slit pattern.
[tex]asin\theta=\frac{2N+1}{2}\lambda[/tex]
Using the formula
[tex]0.11\times 10^{-3}sin(2.12)=\frac{2N+1}{2}(582\times 10^{-9})[/tex]
[tex]2N+1=\frac{0.11\times 10^{-3}sin(2.12)\times 2}{582\times 10^{-9}}[/tex]
[tex]2N+1=13.98[/tex]
[tex]2N=13.98-1=12.98[/tex]
[tex]N=\frac{12.98}{2}\approx 6[/tex]
Hence, 6 diffraction maxima are contained in a region of the Fraunhofer single-slit pattern