Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
Consider the given function.

Type the correct answer in each box Use numerals instead of words If necessary use for the fraction bars Consider the given function class=

Respuesta :

Answer:

to determine the inverse of the given function, change f(x) to y, switch [tex]\boxed{x}[/tex] and y and solve for [tex]\boxed{y}[/tex]

The resulting function can be written as

[tex]f^{-1}(x)=x^2+\boxed{4}[/tex] where [tex]x\geq\boxed{0}[/tex]

Step-by-step explanation:

Hello,

f is defined for [tex]x\geq 4[/tex] as x-4 must be greater or equal to 0

and [tex]f(x)\geq 0[/tex]

so [tex]f^{-1}[/tex] is defined for [tex]x\geq 0[/tex]

and then we can write

[tex]x=(fof^{-1})(x)=f(f^{-1}(x))=\sqrt{f^{-1}(x)-4} \ so\\f^{-1}(x)-4=x^2 <=> f^{-1}(x)=x^2+4[/tex]

hope this helps