Answer:
to determine the inverse of the given function, change f(x) to y, switch [tex]\boxed{x}[/tex] and y and solve for [tex]\boxed{y}[/tex]
The resulting function can be written as
[tex]f^{-1}(x)=x^2+\boxed{4}[/tex] where [tex]x\geq\boxed{0}[/tex]
Step-by-step explanation:
Hello,
f is defined for [tex]x\geq 4[/tex] as x-4 must be greater or equal to 0
and [tex]f(x)\geq 0[/tex]
so [tex]f^{-1}[/tex] is defined for [tex]x\geq 0[/tex]
and then we can write
[tex]x=(fof^{-1})(x)=f(f^{-1}(x))=\sqrt{f^{-1}(x)-4} \ so\\f^{-1}(x)-4=x^2 <=> f^{-1}(x)=x^2+4[/tex]
hope this helps