Respuesta :

Answer:

2.45

Step-by-step explanation:

Given  f(x)=√x+1 and g(x)=3+√x, to calculate for  (f∘g)(4), first we need to get the function  (f∘g)(x).

(f∘g)(x). = f{g(x)}

since g(x) =3+√x, then;

f{g(x)} = f(3+√x)

If f(x) = √x+1

f(3+√x) can be gotten by simply replacing x with 3+√x in f(x)

f(3+√x) = √(3+√x)+1

f{g(x)} = √(3+√x)+1

f{g(4)} can be gotten by substituting x = 4 into the resulting function above.

f{g(4)} = √(3+√4)+1

f{g(4)} = √(3+2)+1

f{g(4)} = √5+1

f{g(4)} = √6

f{g(4)}  = 2.449 ≈ 2.45 to two decimal places.

Hence,  (f∘g)(4) for the functions to two decimal places is 2.45