Respuesta :

Answer:

[tex]z=5\left(\cos \left(\dfrac{3\pi}{2}\right)+i\sin \left(\dfrac{3\pi}{2}\right)\right)[/tex]

Step-by-step explanation:

If a complex number is z=a+ib, then the trigonometric form of complex number is

[tex]z=r(\cos \theta +i\sin \theta)[/tex]

where, [tex]r=\sqrt{a^2+b^2}[/tex] and [tex]\tan \theta=\dfrac{b}{a}[/tex], [tex]\theta[/tex] is called the argument of z, [tex]0\leq \theta\leq 2\pi[/tex].

The given complex number is -5i.

It can be rewritten as

[tex]z=0-5i[/tex]

Here, a=0 and b=-5. [tex]\theta[/tex] lies in 4th quadrant.

[tex]r=\sqrt{0^2+(-5)^2}=5[/tex]

[tex]\tan \theta=\dfrac{-5}{0}[/tex]

[tex]\tan \theta=\infty[/tex]

[tex]\theta=2\pi -\dfrac{\pi}{2}[/tex]    [tex][\because \text{In 4th quadrant }\theta=2\pi-\theta][/tex]

[tex]\theta=\dfrac{3\pi}{2}[/tex]

So, the trigonometric form is

[tex]z=5\left(\cos \left(\dfrac{3\pi}{2}\right)+i\sin \left(\dfrac{3\pi}{2}\right)\right)[/tex]

Answer:

in degrees the answer is 5 (cos 270 + i sin 270)

in radians the answer is 5 (cos (3pi/2) + i sin (3pi/2))

Step-by-step explanation:

Ver imagen kymuffett