Use the quadratic formula to find all degree solutions and θ if 0° ≤ θ < 360°. Use a calculator to approximate all answers to the nearest tenth of a degree. (Enter your answers as a comma-separated list. If there is no solution, enter NO SOLUTION.) cos2 θ + cos θ − 1 = 0 (a) all degree solutions (Let k be any integer.) θ = (b) 0° ≤ θ < 360° θ =

Respuesta :

Answer:

[tex] \theta = 51.8^\circ [/tex]   or   [tex] \theta = 308.2^\circ [/tex]

Step-by-step explanation:

[tex] \cos^2 \theta + \cos \theta − 1 = 0 [/tex]

[tex] x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} [/tex]

[tex] \cos \theta = \dfrac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} [/tex]

[tex] \cos \theta = \dfrac{-1 \pm \sqrt{1 + 4}}{2} [/tex]

[tex] \cos \theta = \dfrac{-1 \pm \sqrt{5}}{2} [/tex]

[tex] \cos \theta = 0.61803 [/tex]   or  [tex] \cos \theta = -1.61803 [/tex]

The range of the cos θ function excludes θ = -1.61803, so we discard that solution.

[tex] \theta = 51.8^\circ [/tex]   or   [tex] \theta = 308.2^\circ [/tex]