Respuesta :

Answer:

[tex]\displaystyle x=- \frac{5}{7}[/tex]

Step-by-step explanation:

[tex]5(2x-7)+42-3x=2[/tex]

Expand brackets.

[tex]10x-35+42-3x=2[/tex]

Combine like terms.

[tex]10x-3x+42-35=2[/tex]

[tex]7x+7=2[/tex]

Subtract 7 on both sides.

[tex]7x+7-7=2-7[/tex]

[tex]7x=-5[/tex]

Divide both sides by 7.

[tex]\frac{7x}{7} =\frac{-5}{7}[/tex]

[tex]x=- \frac{5}{7}[/tex]

Answer:

[tex] \boxed{\sf x = - \frac{5}{7}} [/tex]

Step-by-step explanation:

[tex] \sf Solve \: for \: x: \\ \sf \implies 5(2x-7)+42-3x=2 \\ \\ \sf 5(2x - 7) = 10x - 35 : \\ \sf \implies \boxed{ \sf 10x - 35} - 3x + 42 = 2 \\ \\ \sf Grouping \: like \: terms, \: 10x - 35 - 3x + 42 = \\ \sf (10x - 3x) + ( - 35 + 42) : \\ \sf \implies \boxed{ \sf (10x - 3x) + ( - 35 + 42)} = 2 \\ \\ \sf 10x - 3x = 7x : \\ \sf \implies \boxed{ \sf 7x} + ( - 35 + 42) = 2 \\ \\ \sf 42 - 35 = 7 : \\ \sf \implies 7x + \boxed{ \sf 7} = 2 \\ \\ \sf Subtract \: 7 \: from \: both \: sides: \\ \sf \implies 7x + (7 - \boxed{ \sf 7}) = 2 - \boxed{ \sf 7} \\ \\ \sf 7 - 7 = 0 : \\ \sf \implies 7x = 2 - 7 \\ \\ \sf 2 - 7 = - 5 : \\ \sf \implies 7x = \boxed{ \sf - 5} \\ \\ \sf Divide \: both \: sides \: of \: 7x = - 5 \: by \: 7: \\ \sf \implies \frac{7x}{7} = \frac{ - 5}{7} \\ \\ \sf \frac{7}{7} = 1 : \\ \\ \sf \implies x = - \frac{5}{7} [/tex]