Respuesta :

Answer:

The  diameter is  [tex]d = 6.5 *10^{-4} \ m[/tex]

Explanation:

From the question we are told that

   The length of the cylinder is  [tex]l = 120 \ m[/tex]

     The resistance is  [tex]\ 6.0\ \Omega[/tex]

     The  resistivity of the metal is [tex]\rho = 1.68 *10^{-8} \ \Omega \cdot m[/tex]

Generally the resistance of the cylindrical wire is  mathematically represented as

         [tex]R = \rho \frac{l}{A }[/tex]

The cross-sectional area of the cylindrical wire is  

        [tex]A = \frac{\pi d^2}{4}[/tex]

Where  d is the diameter, so

         [tex]R = \rho \frac{l}{\frac{\pi d^2}{4 } }[/tex]

=>     [tex]d = \sqrt{ \rho* \frac{4 * l }{\pi * R } }[/tex]

       [tex]d = \sqrt{ 1.68 *10 ^{-8}* \frac{4 * 120 }{3.142 * 6 } }[/tex]

       [tex]d = 6.5 *10^{-4} \ m[/tex]