Respuesta :

We assume that we need to simplify the expression in two different ways.

Answer:

One way: Raise both, the numerator and denominator, to the third power, and then simplify the expression.

Second way: Simplify the terms inside parentheses, and then raise the result to the third power.

The result of both ways is the same: [tex] \\8x^{9}[/tex]

Step-by-step explanation:

One way

Raise both, the numerator and denominator, to the third power, and then simplify the expression:

[tex] \\ (\frac{4x^{5}}{2x^{2}})^{3}[/tex]

[tex] \\ (\frac{64x^{5*3}}{8x^{2*3}})[/tex]

[tex] \\ (\frac{64x^{15}}{8x^{6}})[/tex]

[tex] \\ \frac{64}{8}\frac{x^{15}}{x^{6}}[/tex]

[tex] \\8x^{9}[/tex]

This is the first simplification.

Second way

Simplify the terms inside parentheses, and then raise the result to the third power.

[tex] \\ (\frac{4x^{5}}{2x^{2}})^{3}[/tex]

[tex] \\ (\frac{4}{2}*\frac{x^{5}}{x^{2}})^{3}[/tex]

[tex] \\ (2*x^{5-2})^{3}[/tex]

[tex] \\ (2*x^{3})^{3}[/tex]

[tex] \\ (2^{3}*x^{3*3})[/tex]

[tex] \\ (8*x^{9})[/tex]

or [tex] \\ 8x^{9}[/tex].