(a) Plot the following function ona Karnaugh map.(Do not expand to minterm form before plotting.)
F(A,B,C,D)=A‘B’+CD’+ABC +A’B’CD’+ABCD’
(b) Find the minimum sum of products.
(c) Find the minimum product of sums

Respuesta :

Answer:

a) the K-map is in the attachment

f = Σm(0,1,2,3,6,10,14,15)

b) from the k-map, the minimum sum of products is

F = A'B' + CD' + ABC

c) the minimum product of sums is

F = (B' + C)(A' + C)(A+ B' +D')(A' + B + D')

Step-by-step explanation:

A Karnaugh map (K-map) is a pictorial framework used to limit the Boolean expressions without utilizing Boolean algebra theorems and equation controls.

a) the given function is f(A,B,C,D)=A‘B’+CD’+ABC +A’B’CD’+ABCD’

expanding the function as four variable terms

f(A,B,C,D)=A‘B’+CD’+ABC +A’B’CD’+ABCD’

= A'B'(C + C')(D + D')+(A + A')(B + B")CD' + ABC(D + D') + A'B'CD' + ABCD'

= A'B'CD + A'B'CD' + A'B'C'D' + ABCD' +AB'CD' + A'BCD' + A'B'CD' + ABCD +ABCD' + A'B'CD' + ABCD'

=A'B'CD + A'B'CD' + A'B'C'D + A'B'C'D' + ABCD' + AB'CD' + A'BCD' +ABCD

f = Σm(0,1,2,3,6,10,14,15)

note: diagram is in the attachment

b) the minterms for the minimum sum of product are

f = Σm(0,1,2,3,6,10,14,15)

simplifying the K-map(done in the attachment)

from the k-map, the minimum sum of products is

F = A'B' + CD' + ABC

c) the maxterms for the minimum product of sums are

f = ПM(4,5,7,8,9,11,12,13)

plot the K-map to find minimum product of sums(done in the attachment)

the minimum product of sums is

F = (B' + C)(A' + C)(A+ B' +D')(A' + B + D')

Ver imagen Busiyijide
Ver imagen Busiyijide
Ver imagen Busiyijide