NEEEED HELPPP NOWWWW Use long division to find the quotient below.
(x^5+ 18x^2 - 27x) - (x+3)

Answer:
Option A is the correct option.
Step-by-step explanation:
[tex] \frac{ {x}^{5} + 18 {x}^{2} - 27x }{x + 3} [/tex]
Factor out X from the expression
[tex] \frac{x( {x}^{4} + 18x - 27)}{x + 3} [/tex]
Add and subtract [tex]3 {x}^{3} [/tex]
[tex] \frac{x( {x}^{4} + 3 {x}^{3} - 3 {x}^{3} + 18x - 27)}{x + 3} [/tex]
Write 18x as a difference
[tex] \frac{x( {x}^{4} + 3 {x}^{3} - 3 {x}^{3} - 9 {x}^{2} + 9 {x}^{2} + 27x - 9x - 27 }{x + 3} [/tex]
factor out [tex] {x}^{3} [/tex]from the expression
[tex] \frac{x( {x}^{3} (x + 3) - 3 {x}^{3} - 9 {x}^{2} + 9 {x}^{2} + 27x - 9x - 27) }{x + 3} [/tex]
Factor out [tex] - 3 {x}^{2} [/tex] from the expression
[tex] \frac{x( {x}^{3} (x + 3) - 3 {x}^{2}(x + 3) + 9 {x}^{2} + 27x - 9x - 27) }{x + 3} [/tex]
factor out 9x from the expression
[tex] \frac{x( {x}^{3}(x + 3) - 3 {x}^{2} (x + 3) + 9x(x + 3) - 9x - 27 }{x + 3} [/tex]
Factor out -9 from the expression
[tex] \frac{x( {x}^{3} (x + 3) - 3 {x}^{2} (x + 3) + 9x(x + 3) - 9(x + 3)}{x + 3} [/tex]
factor out x+3 from the expression
[tex] \frac{x(x + 3)( {x}^{3} - 3 {x}^{2} + 9x - 9) }{x + 3} [/tex]
Reduce the fraction with X+3
[tex]x( {x}^{3} - 3 {x}^{2} + 9x - 9)[/tex]
Distribute X through the parentheses
[tex] {x}^{4} - 3 {x}^{3} + 9 {x}^{2} - 9x[/tex]
hope this helps...
Good luck on your assignment...