Use the quadratic formula to find the exact solutions of x2 − 5x − 2 = 0. x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a x equals 5 plus or minus the square root of 33, all over 2 x equals negative 5 plus or minus the square root of 33, all over 2 x equals 5 plus or minus the square root of 17, all over 2 x equals negative 5 plus or minus the square root of 17, all over 2

Respuesta :

Answer:

x = [ -b +- sqr root (b^2 - 4ac)] / 2a

a = 1

b = -5

c = -2

x = [- - 5 +- sqr root (-5^2 -4 * 1 * -2)] / 2 * 1

x = [5 +- sqr root (25 + 8)] / 2

x1 =  5.3723

x2 =-0.37228

Step-by-step explanation:

Ver imagen wolf1728

Exact solution for the give quadratic equation are

[tex]x=\frac{5+\sqrt{33}}{2},\:x=\frac{5-\sqrt{33}}{2}[/tex]

Quadratic Equation

Quadratic equation of the form [tex]ax^2+bx+c=0[/tex]

For any quadratic equation we get two values for x. we can find the values for x by applying quadratic formula .

Quadratic formula

[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]

Given equation is [tex]x^2-5x-2=0[/tex]

The value of a=1, b= -5  and c=-2

Substitute all the values in the formula.

To find out exact solutions , we need to simplify the final answer.

Exact solutions are without any decimals.

[tex]x=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:1\cdot \left(-2\right)}}{2\cdot \:1}\\x=\frac{-\left(-5\right)\pm \sqrt{33}}{2\cdot \:1}\\x=\frac{-\left(-5\right)\p+ \sqrt{33}}{2\cdot \:1}\\\\x=\frac{5+\sqrt{33}}{2}\\\\x=\frac{-\left(-5\right)- \sqrt{33}}{2\cdot \:1}\\\\x=\frac{5-\sqrt{33}}{2}\\[/tex]

Exact solutions are

[tex]x=\frac{5+\sqrt{33}}{2},\:x=\frac{5-\sqrt{33}}{2}[/tex]

Learn more information about 'Quadratic formula ' here

brainly.com/question/8649555