Respuesta :

Answer:

(a)

[tex]r =\lim_{n \to \infty} |\frac{\frac{2(n+1)!}{2^{2(n+1)}}}{\frac{2n!}{2^{2n}}}| = \lim_{n \to \infty} \frac{n+1}{4} = \infty[/tex]

(b)

if r<1, then it converges absolutely

if r>1, then it diverges

if r=1, then the test is inconclusive

Step-by-step explanation:

The ratio test is:

[tex]\lim_{n \to \infty} |\frac{x[n+1]}{x[n]}| = L[/tex]

if L<1, then it converges absolutely

if L>1, then it diverges

if L=1, then the test is inconclusive

I'm assuming that they used r instead of L. Anyway, to do the ratio test, you plug in n+1 into the equation and make that numerator.

Then you plug in n into the same equation and make that your denominator.

In our case, our equation is [tex]\frac{2n!}{2^{2n}}[/tex].

So lets plug in n+1 and make that our numerator.[tex]\frac{2(n+1)!}{2^{2(n+1)}}[/tex]

Now lets plug in n and make that our denominator. [tex]\frac{2n!}{2^{2n}}[/tex]

Now set up the ratio test.

[tex]\lim_{n \to \infty} |\frac{x[n+1]}{x[n]}| = L[/tex]

[tex]\lim_{n \to \infty} |\frac{\frac{2(n+1)!}{2^{2(n+1)}}}{\frac{2n!}{2^{2n}}}| = L[/tex]

if you simplify this, you would get (view image for the steps)

[tex]\lim_{n \to \infty} |\frac{\frac{2(n+1)!}{2^{2(n+1)}}}{\frac{2n!}{2^{2n}}}| = \lim_{n \to \infty} \frac{n+1}{4} = \infty[/tex]

L = infinity, which is > 1, therefore this series diverges

Ver imagen GrandNecro

(a). The value of r from ratio test is greater than 1.

(b). The value of r tell about that the given series is converges or diverges.

The ratio test is given as,

             [tex]\lim_{n \to \infty} (\frac{x(n+1)}{x(n)} )=r[/tex]

if [tex]r<1,[/tex] then series converges absolutely

if [tex]r>1,[/tex] then series diverges

if [tex]r=1,[/tex] then the test is inconclusive

Given infinite series is,

              [tex]x(n)=\frac{2n!}{2^{2n} }[/tex]

   [tex]\lim_{n \to \infty} \frac{\frac{2(n+1)!}{2^{2(n+1)} } }{\frac{2n!}{2^{2n} } } = \lim_{n \to \infty} \frac{n+1}{4}=\infty=r[/tex]

Here, Observed that value of r is greater than 1.

Thus, the given series is diverges.

Learn more:

https://brainly.com/question/23804543