Set up and evaluate the optimization problem. You are constructing a cardboard box from a piece of cardboard with the dimensions 4 m by 8 m. You then cut equal-size squares from each corner so you may fold the edges. What are the dimensions (in m) of the box with the largest volume

Respuesta :

Answer:

[tex]Shorter\ side=4-2\times 0.845=2.31\ m\\Longest\ side=8-2\times 0.845=6.31\ m\\Height=0.845\ m[/tex]

Step-by-step explanation:

Given that , dimension of the cardboard is 4 m by 8 m.

Lets the dimensions of the square is x m by x m.

The volume after cutting the equal size of square from all the four corners is given as

[tex]V=x\times (4-2x)\times (8-2x)\\V=x\times (32-16x-8x+4x^2)\\V=x\times (4x^2-24x+32)\\V=4x^3-24x^2+32x\\[/tex]

For the maximum volume

[tex]\dfrac{dV}{dx}=12x^2-48x+32=0\\3x^2-12x+8=0\\[/tex]

For maximum value of volume , the value of x will be 0.845

x= 0.845

Therefore the dimensions will be

[tex]Shorter\ side=4-2\times 0.845=2.31\ m\\Longest\ side=8-2\times 0.845=6.31\ m\\Height=0.845\ m[/tex]

Ver imagen StaceeLichtenstein

The volume of a shape is the amount of space in the shape.

The dimensions that produce the largest volume are: 2.31 m by 6.31 m by 0.845 m

The dimensions of the cardboard is given as:

[tex]\mathbf{Length = 4m}[/tex]

[tex]\mathbf{Width = 8m}[/tex]

Assume the cut-out is x.

So, the dimension of the box is:

[tex]\mathbf{Length = 4 - 2x}[/tex]

[tex]\mathbf{Width = 8 - 2x}[/tex]

[tex]\mathbf{Height = x}[/tex]

So, the volume of the box is:

[tex]\mathbf{V = (4 - 2x)(8 - 2x)x}[/tex]

Expand

[tex]\mathbf{V = 32x -24x^2 + 4x^3}[/tex]

Differentiate

[tex]\mathbf{V' = 32 -48x + 12x^2}[/tex]

Set to 0

[tex]\mathbf{32 -48x + 12x^2 = 0}[/tex]

Divide through by 4

[tex]\mathbf{8 -12x + 3x^2 = 0}[/tex]

Rewrite as:

[tex]\mathbf{3x^2-12x +8 = 0}[/tex]

Using a calculator, we have:

[tex]\mathbf{x = 0.845,\ 3.155}[/tex]

3.155 is greater than the dimension of the box.

So, we have:

[tex]\mathbf{x = 0.845}[/tex]

Recall that:

[tex]\mathbf{Length = 4 - 2x}[/tex]

[tex]\mathbf{Width = 8 - 2x}[/tex]

[tex]\mathbf{Height = x}[/tex]

So, we have:

[tex]\mathbf{Length = 4 - 2 \times 0.845 = 2.31}[/tex]

[tex]\mathbf{Width = 8 - 2 \times 0.845 = 6.31}[/tex]

[tex]\mathbf{Height = 0.845}[/tex]

Hence, the dimensions that produce the largest volume are: 2.31 m by 6.31 m by 0.845 m

Read more about volumes at:

https://brainly.com/question/15918399