Respuesta :
Answer:
Explanation:
For this exercise we will use that the potential is created by the charge inside the equinoctial surface and just like in Gauss's law we can consider all the charge concentrated in the center.
Therefore the potential on the ferric surface is
V = k Q / r
where k is the Coulomb constant, Q the charge of the sphere and r the distance from the center to the point of interest
a) On the surface the potential
V = 9 10⁹ Q / 0.5
V = 18 10⁹ Q
Unfortunately you did not write the value of the load, suppose a value to complete the calculations Q = 1 10⁻⁷ C, with this value the potential on the surfaces V = 1800 V
b) The equipotential surfaces are concentric spheres, let's look for the radii for some potentials
for V = 1300V let's find the radius
r = k Q / V
r = 9 109 1 10-7 / 1300
r = 0.69 m
other values are shown in the following table
V (V) r (m)
1800 0.5
1300 0.69
800 1,125
300 3.0
In other words, we draw concentric spheres with these radii and each one has a potential difference of 500V
C) The spacing of the spheres corresponds to lines of radii of the electric field that have the shape
E = k Q / r²