Respuesta :

Assuming angle A is opposite to side a, B is the opposite to side b, and angle C is the opposite to side c.

Answer:

The right triangle has the following angles:

A = 48.31º, B = 41.69º and C = 90º.

The sides are:

[tex] \\ a = 37.26[/tex], [tex] \\ b = 33.12[/tex] and c = 49.9.

Step-by-step explanation:

The inner sum of a triangle = 180º.

A=48.31º,

C=90º

A + B + C = 180º

48.31º+ B + 90º = 180º

B = 180º - 90º - 48.31º

B = 41.69º

We can apply the Law of Sines to solve for unknown sides:

[tex] \\ \frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}[/tex]

We know that sin(90º) = 1.

[tex] \\ \frac{a}{sin(48.31)} = \frac{b}{sin(41.69)} = \frac{49.9}{1}[/tex]

Then, a is:

[tex] \\ \frac{a}{sin(48.31)} = \frac{49.9}{1}[/tex]

[tex] \\ a = 49.9*sin(48.31)[/tex]

[tex] \\ a = 49.9*0.7467[/tex]

[tex] \\ a = 37.26[/tex]

Thus, b is:

[tex] \\ \frac{b}{sin(41.69)} = \frac{49.9}{1}[/tex]

[tex] \\ b = 49.9*sin(41.69)[/tex]

[tex] \\ b = 33.12[/tex]