Respuesta :
Answer:
1) For [tex]x^2 + y^2 - 4x + 12y - 20 = 0[/tex], the standard form is [tex](x-2)^2 + (y+6)^2 = 60\\[/tex]
2) For [tex]x^2 + y^2 + 6x - 8y - 10 = 0[/tex], the standard form is [tex](x + 3)^2 + (y - 4)^2 = 35\\[/tex]
3) For [tex]3x^2 + 3y^2 + 12x + 18y - 15 = 0[/tex], the standard form is [tex](x + 2)^2 + (y+ 3)^2 = 18\\[/tex]
4) For [tex]5x^2 + 5y^2 - 10x + 20y - 30 = 0[/tex], the standard form is [tex](x - 1)^2 + (y+ 2)^2 = 11\\[/tex]
5) For [tex]2x^2 + 2y^2 - 24x - 16y - 8 = 0[/tex], the standard form is [tex](x - 6)^2 + (y+ 4)^2 = 56\\[/tex]
6) For[tex]x^2 + y^2 + 2x - 12y - 9 = 0[/tex], the standard form is [tex](x+1)^2 + (y-6)^2 = 46\\\\[/tex]
Step-by-step explanation:
This can be done using the completing the square method.
The standard equation of a circle is given by [tex](x - a)^2 + (y-b)^2 = r^2[/tex]
1) For [tex]x^2 + y^2 - 4x + 12y - 20 = 0[/tex]
[tex]x^2 - 4x + y^2 + 12y = 20\\x^2 - 4x + 2^2 + y^2 + 12y + 6^2 = 20 + 4 + 36\\(x-2)^2 + (y+6)^2 = 60\\[/tex]
Therefore, for [tex]x^2 + y^2 - 4x + 12y - 20 = 0[/tex], the standard form is [tex](x-2)^2 + (y+6)^2 = 60\\[/tex]
2) For [tex]x^2 + y^2 + 6x - 8y - 10 = 0[/tex]
[tex]x^2 + 6x + y^2 - 8y = 10\\x^2 + 6x + 3^2 + y^2 - 8y + 4^2 = 10 + 9 + 16\\(x + 3)^2 + (y- 4)^2 = 35\\[/tex]
Therefore, for [tex]x^2 + y^2 + 6x - 8y - 10 = 0[/tex], the standard form is [tex](x + 3)^2 + (y - 4)^2 = 35\\[/tex]
3) For [tex]3x^2 + 3y^2 + 12x + 18y - 15 = 0[/tex]
Divide through by 3
[tex]x^2 + y^2 + 4x + 6y = 5[/tex]
[tex]x^2 + y^2 + 4x + 6y = 5\\x^2 + 4x + 2^2 + y^2 + 6y + 3^2 = 5 + 4 + 9\\(x + 2)^2 + (y+ 3)^2 = 18\\[/tex]
Therefore, for [tex]3x^2 + 3y^2 + 12x + 18y - 15 = 0[/tex], the standard form is [tex](x + 2)^2 + (y+ 3)^2 = 18\\[/tex]
4) For [tex]5x^2 + 5y^2 - 10x + 20y - 30 = 0[/tex]
Divide through by 5
[tex]x^2 + y^2 - 2x + 4y = 6[/tex]
[tex]x^2 + y^2 -2x + 4y = 6\\x^2 - 2x + 1^2 + y^2 + 4y + 2^2 = 6 + 1 + 4\\(x - 1)^2 + (y+ 2)^2 = 11\\[/tex]
Therefore, for [tex]5x^2 + 5y^2 - 10x + 20y - 30 = 0[/tex], the standard form is [tex](x - 1)^2 + (y+ 2)^2 = 11\\[/tex]
5) For [tex]2x^2 + 2y^2 - 24x - 16y - 8 = 0[/tex]
Divide through by 2
[tex]x^2 + y^2 - 12x - 8y = 4[/tex]
[tex]x^2 + y^2 - 12x - 8y = 4\\x^2 - 12x + 6^2 + y^2 - 8y + 4^2 = 4 + 36 + 16\\(x - 6)^2 + (y+ 4)^2 = 56\\[/tex]
Therefore, for [tex]2x^2 + 2y^2 - 24x - 16y - 8 = 0[/tex], the standard form is [tex](x - 6)^2 + (y+ 4)^2 = 56\\[/tex]
6) For [tex]x^2 + y^2 + 2x - 12y - 9 = 0[/tex]
[tex]x^2 + 2x + y^2 - 12y = 9\\x^2 + 2x + 1^2 + y^2 - 12y + 6^2 = 9 + 1 + 36\\(x+1)^2 + (y-6)^2 = 46\\[/tex]
Therefore, for[tex]x^2 + y^2 + 2x - 12y - 9 = 0[/tex], the standard form is [tex](x+1)^2 + (y-6)^2 = 46\\\\[/tex]