Answer:
The factors of [tex]x^{3}-y^{3}[/tex] are [tex][(x-y)(x^{2}+xy+y^{2})][/tex].
Step-by-step explanation:
We know that:
[tex]x^{3}+y^{3}=(x+y)(x^{2}-xy+y^{2})[/tex]
Compute the factors of [tex]x^{3}-y^{3}[/tex] as follows:
[tex]x^{3}+(-y)^{3}=(x+(-y))(x^{2}-x(-y)+(-y)^{2})[/tex]
[tex]x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{2})[/tex]
Thus, the factors of [tex]x^{3}-y^{3}[/tex] are [tex][(x-y)(x^{2}+xy+y^{2})][/tex].