Respuesta :

Answer:

Our system of equations is:

  • y+2x+1=0
  • 4y-4x²-12x = -7

We are looking for x

Let's express y using x

  • y+2x+1=0
  • y= -2x-1

Replace x in the second equation with the result

  • 4y-4x²-12x = -7
  • 4(-2x-1)-4x²-12x = -7
  • -8x-4-4x²-12x = -7
  • -8x-4x²-12x = -7+4
  • -4x²-20x = -3
  • -4x²-20x+3 = 0          multiply by -1 to get rid of the - signs with x
  • 4x²+20x-3=0

4x²+20x+3=0 is a quadratic equation

Let Δ be our discriminant

  • a= 4
  • b= 20
  • c= -3

Δ= 20²-4*4*(-3)

Δ=448 > 0 so we have two solutions for x

let x and x' be the solutions

  • x = [tex]\frac{-20-\sqrt{448} }{8}[/tex]= -5.145 ≈ -5.15
  • x'= [tex]\frac{-20+\sqrt{448} }{8}[/tex]= 0.145≈ 0.15

so the solutions are:

-5.15 and 0.15