Answer and Step-by-step explanation: P(X) calculated by the binomial probability formula is:
P(X) = [tex]\left[\begin{array}{ccc}n\\X\end{array}\right][/tex].[tex]p^{x}.(1-p)^{n-x}[/tex]
P(20) = [tex]\left[\begin{array}{ccc}53\\20\end{array}\right] .(0.3)^{20}.(1-0.3)^{33}[/tex]
P(20) = [tex]\frac{53!}{33!.20!}.3.5.10^{-11}.7.7.10^{-6}[/tex]
P(20) = 0.0552
To determine whether the normal distribution can be used to estimate this probability, both n.p and n.(1-p) must be greater than 5:
n . p = 53*0.3 = 15.9
n.(1-p) = 53(1-0.3) = 37.1
Since both ARE greater than 5, normal distribution can be used.
To approximate:
mean = n . p = 15.9
standard deviation = [tex]\sqrt{n.p.(1-p)}[/tex] = 3.34
Find the z-score:
z = [tex]\frac{x - mean}{sd}[/tex] = [tex]\frac{20-15.9}{3.34} = 1.23[/tex]
z-score = 0.8907
Comparing values:
0.8907 - 0.0552 = 0.8355