A random sample of 81 observations has a mean of 20, a median of 21, a mode of 22, and a standard deviation of 3.6. The 80% confidence interval for the population mean is

Respuesta :

Answer:

The 80% confidence interval for the population mean is  19.48 or 20.52

Step-by-step explanation:

Given that ;

the random sample size n = 81

mean [tex]\bar x[/tex] = 20

median  = 21

mode = 22

standard deviation σ = 3.6

The 80% confidence interval for the population mean can be calculated as follows:

Firstly; the degree of freedom df = n - 1

df = 81 - 1

df = 80

At 80% confidence interval the critical value is z =  [tex]t_{0.1, 80} = 1.292[/tex]

The 80% confidence interval for the population mean is  = [tex]\bar x \pm \dfrac{ z \times \sigma }{\sqrt{n}}[/tex]

[tex]= 20 \pm \dfrac{ 1.292 \times 3.6 }{\sqrt{81}}[/tex]

[tex]=20 \pm \dfrac{ 4.6512 }{9}[/tex]

[tex]= {20 \pm 0.5168 }[/tex]

= 19.4832 or 20.5168

[tex]\approx[/tex] 19.48 or 20.52