Suppose you titrate 25.00 mL of 0.200 M KOBr with 0.200M H2SO4. The pH at half-equivalence point is 7.75 a). What is the initial pH of the 25.00mL of 0.200M KOBr mentioned above

Respuesta :

Answer:

Approximately [tex]10.88[/tex].

Explanation:

Equilibrium constant

[tex]\rm OBr^{-}[/tex] can act as a weak Bronsted-Lowry base:

[tex]\rm OBr^{-}\; (aq) + H_2O\; (l) \rightleftharpoons HOBr\; (l) + OH^{-}\; (aq)[/tex].

(Side note: the state symbol of [tex]\rm HOBr[/tex] in this equation is [tex]\rm (l)[/tex] (meaning liquid) because [tex]\rm HOBr[/tex] is a weak acid.)

However, the equilibrium constant of this reaction, [tex]K_\text{eq}[/tex], isn't directly given. The idea is to find [tex]K_\text{eq}[/tex] using the [tex]\rm pH[/tex] value at the half-equivalence point. Keep in mind that this system is at equilibrium all the time during the titration. If temperature stays the same, then the same [tex]K_\text{eq}[/tex] value could also be used to find the [tex]\rm pH[/tex] of the solution before the acid was added.

At equilibrium:

[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].

At the half-equivalence point of this titration, exactly half of the base, [tex]\rm OBr^{-}[/tex], has been converted to its conjugate acid, [tex]\rm HOBr[/tex]. Therefore, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should both be equal to one-half the initial concentration of [tex]\rm OBr^{-}[/tex].

As a result, the half-equivalence concentration of [tex]\rm OBr^{-}[/tex] and [tex]\rm HOBr[/tex] should be the same. The expression for [tex]K_\text{eq}[/tex] can thus be simplified:

[tex]\begin{aligned}& K_\text{eq} \\&= \frac{\left(\text{half-equivalence $[\rm HOBr\; (l)]$}\right)\cdot \left(\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\right)}{\text{half-equivalence $[\rm OBr^{-}\; (l)]$}}\\ &=\text{half-equivalence $[\rm OH^{-}\; (aq)]$}\end{aligned}[/tex].

In other words, the [tex]K_\text{eq}[/tex] of this system is equal to the [tex]\rm OH^{-}[/tex] concentration at the half-equivalence point. Assume that [tex]\rm p\mathnormal{K}_\text{w}[/tex] the self-ionization constant of water, is [tex]14[/tex]. The concentration of [tex]\rm OH^{-}[/tex] can be found from the [tex]\rm pH[/tex] value:

[tex]\begin{aligned}& \text{half-equivalence $[\rm OH^{-}\; (aq)]$} \\ &= 10^{\rm pH - p\mathnormal{K}_\text{w}}\;\rm mol \cdot L^{-1} \\ &= 10^{7.75 - 14}\; \rm mol \cdot L^{-1}\\ &= 10^{-6.25}\; \rm mol \cdot L^{-1}\end{aligned}[/tex].

Therefore, [tex]\begin{aligned} K_\text{eq} &= 10^{-6.25}\end{aligned}[/tex].

Initial pH of the solution

Again, since [tex]\rm KOBr[/tex] is a soluble salt, all that [tex]0.200\; \rm M[/tex] of [tex]\rm KOBr[/tex] in this solution will be in the form of [tex]\rm K^{+}[/tex] and [tex]\rm OBr^{-}[/tex] ions. Before any hydrolysis takes place, the concentration of [tex]\rm OBr^{-}[/tex] should be equal to that of [tex]\rm KOBr[/tex]. Therefore:

[tex]\text{$[\rm OBr^{-}\; (aq)]$ before hydrolysis} = 0.200\; \rm M[/tex].

Let the equilibrium concentration of [tex][\rm OH^{-}\; (aq)][/tex] be [tex]x\; \rm M[/tex]. Create a RICE table for this reversible reaction:

[tex]\begin{array}{c|ccccccc} & \rm OBr^{-}\; (aq) &+&\rm H_2O\; (l)& \rightleftharpoons & \rm HOBr\; (l)& + & \rm OH^{-}\; (aq) \\ \textbf{I}& 0.200\; \rm M & & & & 0 \; \rm M & & 0\; \rm M \\ \textbf{C} & -x\; \rm M & & & & +x \; \rm M & & +x\; \rm M \\ \textbf{E}& (0.200 + x)\; \rm M & & & & x \; \rm M & & x\; \rm M \end{array}[/tex].

Assume that external factors (such as temperature) stays the same. The [tex]K_\text{eq}[/tex] found at the half-equivalence point should apply here, as well.

[tex]\displaystyle K_\text{eq} = \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]}[/tex].

At equilibrium:

[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x}[/tex].

Assume that [tex]x[/tex] is much smaller than [tex]0.200[/tex], such that the denominator is approximately the same as [tex]0.200[/tex]:

[tex]\displaystyle \frac{[\rm HOBr\; (l)]\cdot [\rm OH^{-}\; (aq)]}{[\rm OBr^{-}\; (aq)]} = \frac{x^2}{0.200 + x} \approx \frac{x^2}{0.200}[/tex].

That should be equal to the equilibrium constant, [tex]K_\text{eq}[/tex]. In other words:

[tex]\displaystyle \frac{x^2}{0.200} \approx K_\text{eq} = 10^{-6.25}[/tex].

Solve for [tex]x[/tex]:

[tex]x \approx 3.35\times 10^{-4}[/tex].

In other words, the [tex]\rm OH^{-}[/tex] before acid was added was approximately [tex]3.35\times 10^{-4}\; \rm M[/tex], which is the same as [tex]3.35\times 10^{-4}\; \rm mol \cdot L^{-1}[/tex]. Again, assume that [tex]\rm p\mathnormal{K}_\text{w} = 14[/tex]. Calculate the [tex]\rm pH[/tex] of that solution:

[tex]\begin{aligned}\rm pH &= \rm p\mathnormal{K}_\text{w} + \log [\mathrm{OH^{-}}] \approx 10.88\end{aligned}[/tex].

(Rounded to two decimal places.)

Otras preguntas