Respuesta :

Answer:

x = 19.9

Step-by-step explanation:

Given the above right angled triangle, we can find the missing side, x, using the trigonometric ratio formula.

The given angle (θ) = 19°

The adjacent length = x

Hypotenuse length = 21

Thus,

Cos (θ) = adjacent/hypotenuse

[tex] cos 19 = \frac{x}{21} [/tex]

[tex] 0.9455 = \frac{x}{21} [/tex]

Multiply both sides by 21 to solve for x

[tex] 0.9455*21 = x [/tex]

[tex] 0.9455*21 = x [/tex]

Answer:

x =

Step-by-step explanation:

Given the above right angled triangle, we can find the missing side, x, using the trigonometric ratio formula.

The given angle (θ) = 19°

The adjacent length = x

Hypotenuse length = 21

Thus,

Cos (θ) = adjacent/hypotenuse

[tex] cos 19 = \frac{x}{21} [/tex]

[tex] 0.9455 = \frac{x}{21} [/tex]

Multiply both sides by 21 to solve for x

[tex] 0.9455*21 = x [/tex]

[tex] 19.86 = x [/tex]

[tex] x = 19.86 [/tex]

The missing side = x ≈ 19.9 (to the nearest tenth)