A group of 59 randomly selected students have a mean score of 29.5 with a standard deviation of 5.2 on a placement test. What is the 95% confidence interval for the mean score, , of all students taking the test

Respuesta :

Answer:

The 95% confidence interval for the mean score, , of all students taking the test is

        [tex]28.37< L\ 30.63[/tex]

Step-by-step explanation:

From the question we are told that

    The sample size is [tex]n = 59[/tex]

    The mean score is  [tex]\= x = 29.5[/tex]

     The standard deviation [tex]\sigma = 5.2[/tex]

Generally the standard deviation of mean is mathematically represented as

                [tex]\sigma _{\= x} = \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

               [tex]\sigma _{\= x} = \frac{5.2 }{\sqrt{59} }[/tex]

             [tex]\sigma _{\= x} = 0.677[/tex]

The degree of freedom is mathematically represented as

          [tex]df = n - 1[/tex]

substituting values

        [tex]df = 59 -1[/tex]

        [tex]df = 58[/tex]

Given that the confidence interval is 95%  then the level of significance is mathematically represented as

         [tex]\alpha = 100 -95[/tex]

        [tex]\alpha =[/tex]5%

        [tex]\alpha = 0.05[/tex]

Now the critical value at  this significance level and degree of freedom is

       [tex]t_{df , \alpha } = t_{58, 0.05 } = 1.672[/tex]

Obtained from the critical value table  

    So the the 95% confidence interval for the mean score, , of all students taking the test is mathematically represented as

      [tex]\= x - t*(\sigma_{\= x}) < L\ \= x + t*(\sigma_{\= x})[/tex]

substituting value

      [tex](29.5 - 1.672* 0.677) < L\ (29.5 + 1.672* 0.677)[/tex]

       [tex]28.37< L\ 30.63[/tex]