Select the correct answer.
The function RX) = 2x + 3x + 5, when evaluated, gives a value of 19. What is the function's input value?
A. 1

B. -1

C. 2

D. -2

E. -3​

Respuesta :

Answer:

Correct option: C.

Step-by-step explanation:

(Assuming the correct function is R(x) = 2x^2 + 3x + 5)

To find the input value that gives the value of R(x) = 19, we just need to use this output value (R(x) = 19) in the equation and then find the value of x:

[tex]R(x) = 2x^2 + 3x + 5[/tex]

[tex]19 = 2x^2 + 3x + 5[/tex]

[tex]2x^2 + 3x -14 = 0[/tex]

Solving this quadratic function using the Bhaskara's formula (a = 2, b = 3 and c = -14), we have:

[tex]\Delta = b^2 - 4ac = 9 + 112 = 121[/tex]

[tex]x_1 = (-b + \sqrt{\Delta})/2a = (-3 + 11)/4 = 2[/tex]

[tex]x_2 = (-b - \sqrt{\Delta})/2a = (-3 - 11)/4 = -3.5[/tex]

So looking at the options, the input to the function is x = 2

Correct option: C.

Answer:

In photo below

Explanation:

In photo below

I hope this helps

Ver imagen websitetechie
Ver imagen websitetechie