Answer:
[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]
[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]
[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]
And the variance for this case would be:
[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]
And the standard deviation is:
[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]
Step-by-step explanation:
For this case we have the following probability density function
[tex] f(x)= \frac{1}{3}, 4 \leq x \leq 7[/tex]
And for this case we can find the expected value with this formula:
[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]
[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]
[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]
And the variance for this case would be:
[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]
And the standard deviation is:
[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]