Respuesta :

Answer:

[tex]z=(-\sqrt{3}+i)^6[/tex] = -64

Step-by-step explanation:

You have the following complex number:

[tex]z=(-\sqrt{3}+i)^6[/tex]       (1)

The Demoivres theorem stables the following:

[tex]z^n=r^n(cos(n\theta)+i sin(n\theta))[/tex]      (2)

In this case you have n=6

In order to use the theorem you first find r and θ, as follow:

[tex]r=\sqrt{3+1}=2\\\\\theta=tan^{-1}(\frac{1}{\sqrt{3}})=30\°[/tex]

Next, you replace these values into the equation (2) with n=6:

[tex]z^6=(2)^6[cos(6*30\°)+isin(6*30\°)]\\\\z^6=64[-1+i0]=-64[/tex]

Then, the solution is -64

Answer:

A) -64

Step-by-step explanation:

Edge 2021

Ver imagen alyssacolis