A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string

Respuesta :

Answer:

The time interval is [tex]t = 5.48 *10^{-3} \ s[/tex]

Explanation:

From the question we are told that

   The length of the string is  [tex]l = 3.00 \ m[/tex]

    The  mass of the string is [tex]m = 5.00 \ g = 5.0 *10^{-3}\ kg[/tex]

     The  tension on the string is  [tex]T = 500 \ N[/tex]

   

The  velocity of the pulse is mathematically represented as

      [tex]v = \sqrt{ \frac{T}{\mu } }[/tex]

Where [tex]\mu[/tex] is the linear density which is mathematically evaluated as

       [tex]\mu = \frac{m}{l}[/tex]

substituting values

     [tex]\mu = \frac{5.0 *10^{-3}}{3}[/tex]

     [tex]\mu = 1.67 *10^{-3} \ kg /m[/tex]

Thus  

     [tex]v = \sqrt{\frac{500}{1.67 *10^{-3}} }[/tex]

    [tex]v = 547.7 m/s[/tex]

The time taken is evaluated as

    [tex]t = \frac{d}{v}[/tex]

substituting values

      [tex]t = \frac{3}{547.7}[/tex]

      [tex]t = 5.48 *10^{-3} \ s[/tex]