contestada

Let C be the curve given parametrically by r(t) = ⟨t + 3, 4 − 2t⟩, t : 1 → 2; if f(x, y) = 2x + 4y, the value of ∫C f(x, y) ds is?
A. 0
B. 13√5 5
C. 4√5 5
D. 26√5 5
E. 22√5

Respuesta :

Replace x and y with the corresponding components of r(t), where

[tex]\mathbf r(t)=\langle x(t),y(t)\rangle=\langlet+3,4-2t\rangle[/tex]

We have

[tex]\displaystyle\int_Cf(x,y)\,\mathrm ds=\int_1^2f(x(t),y(t))\sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]

[tex]=\displaystyle\int_1^2(2(t+3)+4(4-2t))\sqrt{1^2+(-2)^2}\,\mathrm dt[/tex]

[tex]=\displaystyle\sqrt5\int_1^2(22-6t)\,\mathrm dt[/tex]

[tex]=\sqrt5(22t-3t^2)\bigg|_1^2=\boxed{13\sqrt5}[/tex]

I'm tempted to say the answer is B, but it doesn't seem to match up exactly. It's possible that choice contains a typo.